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Diabetes mellitus (DM) was likely first described about 3500 years ago and given its
name about 2200 years ago by Demetrios of Apamaia. The word “diabetes” derives from
the Greek “diabeinein” or “siphon,” a word that captures its association with excess urina-
tion. Although DM has been primarily regarded as a disorder of glucose metabolism and
homeostasis, it has more recently been viewed as a constellation of metabolic disturbances,
including abnormalities of carbohydrate metabolism, adipose storage, lipid metabolism,
and protein biochemistry. Although commonly characterized as a disease of impaired skele-
tal muscle glucose uptake, DM adversely affects hepatic, muscle, adipose, and vascular
function. Indeed, it is this last effect that may represent the greatest mortality hazard in this
population. Among the classical cardiovascular risk factors for myocardial infarction (MI),
only DM carries the same risk of MI as survivors of MI.1 DM creates an environment
adverse to vascular function through a wide variety of dysmetabolic assaults. 

Secular trends in the United States have increased the level of attention paid to DM and
its sequelae. The incidence of DM is increasing rapidly as a result of aging and an ever more
obese population.2 Indeed, between 2000 and 2010, the number of patients with DM is
expected to increase by 23% in the United States and 46% around the world.3 The fate of
these patients is linked directly to atherosclerosis. Half of all patients with type 2 DM have
evidence of coronary artery disease when they present with DM4 and the vast majority of
DM-related hospital admissions are for atherosclerotic vascular disease.5 DM increases the
frequency of stroke, heart attack, and amputation 2- to 4-fold, putting these patients at
great risk.6

The endothelium

There are many physiological impairments that plausibly link DM with a marked increase in
atherosclerotic vascular disease, including platelet hyper-reactivity, a tendency for negative arte-
rial remodeling, impaired fibrinolysis coupled with a tendency for thrombosis and coagulation,
increased inflammation, and endothelial dysfunction.7,8 In contrast to the other factors on this list,
endothelial dysfunction may be an important nexus of dysfunction in DM, linking each of these
pathological manifestations. Endothelial dysfunction, present at disease onset, may be the forme
fruste of atherogenesis that is present throughout the course of DM and associated with late-stage
adverse outcomes. 

The concept of an active endothelium, integral to blood vessel function, is a relatively new
one. In contrast to the supposed inert inner vascular barrier, Furchgott and Zawadzki demon-
strated that vascular tone is regulated by the endothelium.9 Since that seminal observation, inves-
tigations have revealed that vascular endothelium, a crucial regulator of vascular homeostasis,
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participates importantly in the control of:
• vascular tone and blood flow
• coagulation and thrombosis
• nutrient delivery and waste removal
• inflammation
• vascular smooth muscle cell growth and migration
• leukocyte attraction and diapedesis. 
The development of endothelial dysfunction may

portend an environment that allows the development of
vascular disease, providing a link between DM and micro-
vascular and macrovascular disease (eg, retinopathy,
nephropathy, MI, stroke, and amputation). 

Endothelial vascular regulation occurs through the pro-
duction and elaboration of autocrine and paracrine factors
that regulate both the function and structure of vessel 
wall constituents. The endothelium maintains a balance
between vasodilation and vasoconstriction, coagulation
and anticoagulation, and leukocyte attraction and dia-
pedesis. Of the many factors regulated by the endothelium,
perhaps the best characterized is nitric oxide (NO).10 Pro-
duced by nitric oxide synthase (NOS) III or endothelial
NOS (eNOS), NO is a potent vasodilator, platelet antago-
nist, and anti-inflammatory agent.11 Its release is modulated
by a wide array of chemical and biophysical stimuli,
allowing its fine modulation.

Other important endothelium-elaborated mediators of
vascular tone and function include prostanoids, endothelin,
and angiotensin II. When patients have a risk factor for
vascular disease, such as DM or atherosclerosis per se,
the bioavailability of NO is attenuated. Thus, stimuli that
commonly cause the release of NO are no longer able to
produce vigorous vasodilation. 

Because of the evanescence of NO, investigating its
bioavailability in humans is done indirectly by taking
advantage of its vasodilatory properties. Endothelial NOS
may be stimulated by the infusion of agonists, such as
acetylcholine or one of its congeners – methacholine,
bradykinin, serotonin, or substance P – all of which are
receptor-mediated modulators of NO release.12 This method
is typically used to examine resistance in arteriolar function. 

Peripheral conduit vessel NO bioavailability can be
studied by the response to reactive hyperemia.13 In this
experimental model, a sphygmomanometric cuff is placed
on the arm, inflated to suprasystolic pressure for 5 minutes,
and released. Upon release, as a result of reactive hyper-
emia, blood flow into the limb beyond the cuff increases 4-
to 7-fold. This increase in blood flow and shear stress
across the segment of interest causes the release of NO,
dilating the artery 60 to 70 seconds after cuff release. Thus,
the increase in size (diameter) of the artery at one minute
after restoration of flow is an index of NO bioavailability.14

This examination is typically performed in the brachial
artery, but has been reported in other conduit vessels. In

humans, endothelial dysfunction is typically characterized
by an attenuation of this vasodilatory response or even
frank vasoconstriction.

Mechanisms of endothelial dysfunction in DM

The mechanisms underlying impaired endothelial
function in patients with type 2 DM are varied, but likely
include metabolic derangements such as hyperglycemia,
excess liberation of free fatty acids (FFAs), and insulin
resistance (Figure 1). These derangements increase NO
scavenging by increasing the activation of protein kinase
C, augmenting production of reactive oxygen species
(ROS), and uncoupling eNOS. 

Hyperglycemia

The elevation of blood glucose was the first recognized
abnormality in DM. The endothelium, a sensitive sensor
for elevations in glucose, becomes rapidly dysfunctional in
healthy human subjects. Dysfunction in response to hyper-
glycemia is seen as early as 6 hours.15,16 The rapidity of
these functional changes indicates that the endothelium is
an early indicator of hyperglycemia. Furthermore, it may
convey these changes so rapidly, in contrast to other cellu-
lar components of the vasculature, because of the persis-
tent expression of glucose transporter 1 in endothelial cells
despite ambient hyperglycemia.17 The intracellular glucose
concentration of vascular endothelial cells echos that in 
the extracellular environment. In contrast, vascular smooth
muscles cells maintain a normal intracellular glucose
concentration by limiting glucose transport.18
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Figure 1: The fundamental metabolic abnormalities in
diabetes mellitus activate adverse protein kinase C, increase
the production of advanced glycation endproducts, and
amplify superoxide anion production. In turn, endothelial
homeostatic mechanisms are co-opted, including
vasodilation, attenuation of inflammation, and platelet
antagonism8

ET-1 = endothelin; AT II = angiotensin II; NF-kB = nuclear factor kappa
B; AP-1 = activator protein-1; TF = tissue factor; PAI-1 = plasminogen
activator inhibitor-1; IL-1 = interleukin-1; ICAM-1 = intracellular
adhesion molecule-1; NO = nitric oxide; VSMC = vascular smooth
muscle cell; RAGE = receptor to advanced glycation endproduct



(LDL),37,38 and by directly affecting the endothelium.39 In
the endothelium, analogous to hyperglycemia, FFA induces
membrane translocation and activation of protein kinase C,
increases endothelin-1 production, and increases super-
oxide anion production.35,39-42 The adverse effects of FFA on
endothelial function have been demonstrated in humans.
Infusion of FFA to postprandial levels impairs endothelial
dysfunction in a matter of hours and this impairment can
be reversed with infusion of an antioxidant.35,43

Insulin resistance

Insulin resistance often precedes increases in glucose
by years to decades and plays a key role in atherogenesis.
Peripheral resistance to insulin precedes beta cell failure
that produces overt hyperglycemia. Although exemplified
by impaired skeletal muscle glucose uptake, insulin resis-
tance also occurs in liver, adipose tissue, and the endothe-
lium. The extent of insulin resistance correlates both with
glucose disposal and endothelium-dependent vasodila-
tion.44 Endothelial dysfunction occurs in the early stages of
DM,45-47 prior to evidence of microvascular disease.48

Although there is a clustering of cardiovascular risk factors
(the metabolic syndrome) prior to DM onset, it is likely
that insulin resistance contributes additively to vascular
risk. This pathobiological link between insulin resistance
and endothelial dysfunction hints that improvements in
insulin resistance may result in improved endothelium-
dependent vasodilation. Support for this concept has been
demonstrated in humans with the insulin-sensitizing agents,
troglitazone and metformin.49,50

Endothelial dysfunction in diabetes

The metabolic disturbances described above impair
endothelial cell activity and make the vascular environ-
ment more favorable for development of atherosclerosis.
Diabetes compromises each anti-atherosclerotic process,
including vascular tone regulation, regulation of vessel-
leukocyte interactions, and platelet antagonism, creating a
permissive environment for the progression of atherogenesis. 

Vasomotor function

Augmented production of ROS, especially superoxide
anions, decrease the bioavailability of endothelium-derived
NO. Superoxide anions scavenge NO to form peroxyni-
trite.51 Endothelium-dependent, NO-mediated vasodila-
tion is attenuated in resistance and conduit vessels in
patients with type 1 and type 2 DM,45,52-54 and oxidative
stress inhibits the production of compensatory vasodilators
(eg, prostacylin) to further limit vasorelaxation.55

Paralleling the decrease in vasodilator mediators, DM
heightens production of vasoconstrictor peptides, including
endothelin-1 and angiotensin II. A wide variety of insults

The increased production of pathogenic reactive
oxygen species (ROS), (eg, superoxide anion), represents 
a central abnormality caused by hyperglycemia. In contrast
to other risk factors, DM co-opts the protective affects of
endothelial cells and causes them to become the primary
source of vascular oxidative stress.19 In the setting of other
risk factors, endothelial cells minimize oxidative stress. 

DM creates a cascade, employing an ever increasing
number of cellular components in the production of ROS:

• Beginning with the mitochondria, hyperglycemia
attenuates the donation of electrons for ATP generation,
shifting the electron transport chain towards generation of
superoxide anions.20

• Mitochondrial production of superoxide anions acti-
vates protein kinase C and NAD(P)H oxidase, increasing
the production of cytosolic superoxide anions.21

• Increased superoxide anions scavenge NO to form
peroxynitrite, which oxidizes the eNOS co-factor tetra-
hydrobiopterin and triggers preferential production of
superoxide anion instead of NO by eNOS.22

• Extracellular production of superoxide anions also
increases as a result of increased xanthine oxidase libera-
tion (likely from the liver).23-25 

We have demonstrated that hyperglycemia impairs
endothelial function in 6 hours15 and that this impairment
can be reversed with infusion of an antioxidant.16 More-
over, we showed that inhibition of protein kinase C beta
prior to hyperglycemia prevents vascular dysfunction,26

confirming the importance of ROS and protein kinase C in
the early development of hyperglycemia-induced endothe-
lial dysfunction in humans. 

Hyperglycemia also increases other sources of oxida-
tive stress, including the intracellular production of
advanced glycation endproduct (AGE) and activation of
the endothelial receptor to AGE (RAGE). Functional
abnormalities arise as a response to intracellular protein
modification and activation of RAGE.27 AGEs can produce
ROS, per se, and increase intracellular enzymatic produc-
tion of ROS via activation of RAGE.28,29 Increases in 
glucose concentration also heighten diacylglycerol concen-
tration,30 causing the preferential activation of protein kinase
C isoforms ß and δ.31,32 Controlling glycemia eliminates
activation of protein kinase C, thus implicating the impor-
tance of this pathway of activation in vivo.33,34

Increased free fatty acid concentration

The increase in FFA liberation from adipocytes also
augments the oxidative stress burden and diminishes NO
bioavailability.35 Arising from the increased release from
adipose tissue and decreased skeletal muscle uptake,36

increased plasma FFA heightens oxidative stress by aug-
menting small, dense, oxidized low-density lipoprotein



in DM – including insulin resistance and hyper-
glycemia, increased oxidative stress, protein kinase C
membrane translocation and activation,31 and RAGE
ligand-receptor interaction56 – combine to increase
endothelin production.41,42 Endothelin causes vascular
smooth muscle contraction with an increase in vascu-
lar tone, stimulates angiotensin II production and
vascular smooth muscle proliferation, and increases
salt and water retention.57 

Inflammation

Inflammation seems to fuel the atherogenic
process58,59 and is strongly linked to DM and insulin
resistance.60,61 Atherosclerosis is initiated with T-lym-
phocyte migration into the vascular intima.59 These
cells produce cytokines and chemokines and recruit
monocytes and vascular smooth muscle cells into the
nascent plaque. The monocytes and vascular smooth
muscle cells scavenge oxidized LDL, become foam
cells and, when amassed, become fatty streaks.58

Endothelial dysfunction enhances each of these early
atherogenic processes through activation of inflamma-
tory transcription factors, such as nuclear factor kappa
B (NF-kB).62-64 These factors increase gene expression
of proinflammatory cytokines and chemokines, pro-
duction of leukocyte-adhesion molecules, and inflam-
matory mediator content within atherosclerotic
lesions – processes that foster atherogenesis.65-67 In the
Third National Health and Nutrition Examination
Survey (NHANES III), both glycemia and insulin
resistance correlated directly with markers of inflam-
mation, demonstrating a link between the dysmetabo-
lism of DM and poor vascular outcomes.68

Similarly, improvements in insulin resistance 
and glycemic control reduce inflammation.69.70 These
benefits are translated to the vasculature. Reductions
in inflammation through medication71 or by reducing
visceral adiposity,72 improve endothelial function and
soluble markers of endothelial cellular activation. 

DM exacerbates the late stage of atherosclerosis
as well. Mature atherosclerotic plaque is characterized
by a lipid gruel separated from the vessel lumen by a
fibrous cap. DM increases endothelial cell matrix met-
alloproteinase production, which decreases synthesis
of vascular smooth muscle cell collagen.73,74 As colla-
gen diminishes and fibrous cap collagen metabolizes,
the risk of plaque rupture increases. 

Thrombosis

The tendency for thrombosis is an important
consideration in determining the clinical severity of
plaque rupture through modulation of thrombus

formation and arterial occlusion. Diabetic endothelial
cells produce tissue factor, a powerful coagulant
found in atherosclerotic lesions.75 Moreover, the dys-
functional endothelium has attenuated anticoagulation
as well. Thrombomodulin expression (a cell-surface
based anticoagulant) is decreased, while production of
plasminogen activator inhibitor-1 (a fibrinolytic antag-
onist) is increased. Moreover, the combination of
reduced NO and prostacyclin enhances platelet activa-
tion and aggregation.76-78 The increase in coagulation
and thrombosis potentiate thrombus formation after
plaque rupture and make the development of arterial
occlusion and clinical events more likely.

Conclusion

The last 25 years have clearly demonstrated the
central role of the vascular endothelium in maintain-
ing vascular health, as well as the effects of endothe-
lial dysfunction. DM impairs every homeostatic
mechanism employed by the endothelium to prevent
the development of atherosclerosis. Investigations in
humans with DM have made clear the importance of
many of the pathogenic processes elucidated by basic
science investigation. As our understanding of human
vascular function progresses, new therapeutic strate-
gies may be developed to reduce the cardiovascular
risk suffered by patients with DM.
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