New therapies for pulmonary hypertension

By STUART R. RICH, MD

Pulmonary hypertension was once considered a progressive fatal disease for which there was no effective therapy. Over the past two decades, however, several new drugs have been developed that are effective in improving symptoms, exercise tolerance, and survival. Based on observations made during cardiac catheterization in the 1950s and 1960s, pulmonary hypertension was perceived to be a disease of chronic vasoconstriction in the pulmonary vascular bed. This led to the development of vasodilators as therapy. More recently, however, new insights in the molecular biology of the vasculature have revealed that pulmonary arterial hypertension (PAH) is a chronic disease of uncontrolled endothelial and smooth muscle cell proliferation that produces, in addition to vasoconstriction, medial hypertrophy, concentric laminar intimal fibrosis, vascular occlusion, and localized areas of neovascularization known as plexiform lesions (Figure 1). As a consequence of the progress made in the science of pulmonary vascular disease, drug therapies have been targeted towards halting the progression, with the goal of inducing regression of the vascular disease. Recently approved therapies for PAH reflect this knowledge and are the focus of this issue of Cardiology Rounds.

Clinical classification

PAH refers to any elevation in pulmonary arterial pressure above normal. The presence of pulmonary hypertension may reflect a serious underlying pulmonary vascular disease that can be progressive and fatal or it may simply be an obligatory passive elevation in pulmonary artery pressure in response to elevated filling pressures in the left heart. Consequently, an accurate diagnosis of the cause of PAH in a patient is essential in order to establish an effective treatment plan. In addition, therapies that may be beneficial in some types of PAH may be harmful in others.

In 1998, a new classification for pulmonary hypertension was developed at the World Symposium on Pulmonary Hypertension co-sponsored by the World Health Organization (Table 1). The classification catalogued clinical conditions based on common pathobiological features to serve as a guide in the clinical assessment and treatment of these patients. This review will focus on the treatment of PAH, with particular attention to primary pulmonary hypertension (PPH, Table 2).

Acute testing with vasodilators

Several vasodilators are of value in the assessment of pulmonary vasoreactivity in patients with PAH. Adenosine – an intermediate product in the metabolism of adenosine triphosphate – has potent vasodilator properties through its action on specific vascular receptors. Adenosine is believed to stimulate A1 type endothelial cells and vascular smooth muscle receptors that induce vascular smooth muscle relaxation by increasing cyclic adenosine monophosphate. In patients with PAH, adenosine has been shown to be a potent vasodilator and is predictive of the chronic effects of intravenous prostacyclin and oral calcium channel blockers. Adenosine has an extremely short half-life (<5 seconds) and...
its rapid dissolution provides a safety net should any adverse side effects occur. It is administered intravenously as an infusion in doses of 50 µg/kg/min and titrated upward every 2 minutes until uncomfortable symptoms develop (eg, chest tightness or dyspnea).

Epoprostenol has been used as an acute test of vasoreactivity in patients with PAH. Like adenosine, its short half-life allows it to be discontinued if any acute adverse effects result. Also, similar to adenosine, it is administered incrementally, at 2 ng/kg/min and increased every 15 to 30 minutes until systemic effects (eg, headache, flushing, or nausea) occur that limit the acute dose titration. Favorable acute effects from epoprostenol are predictive of a favorable response to oral calcium channel blockers.

Adenosine and epoprostenol possess potent inotropic properties in addition to their ability to vasodilate the pulmonary vascular bed. When using these drugs for the acute testing of patients, particular attention must be paid to changes in cardiac output that occur in association with the changes in pulmonary arterial pressure. An increase in cardiac output with no change in pulmonary arterial pressure results in a reduction of the calculated pulmonary vascular resistance and may be erroneously interpreted as a vasodilator response.

Nitric oxide (NO) is also a useful drug to test pulmonary vasoreactivity. Because NO binds very rapidly and with high affinity to hemoglobin and is thereby inactivated, inhalation of NO gas results in selective pulmonary vascular effects without influencing the systemic circulation. Inhalation of NO by patients with PAH has been shown to produce an acute reduction in pulmonary vascular resistance, similar to that achieved with intravenous adenosine. NO has also been shown to predict the effectiveness of calcium channel blockers. However, NO differs from adenosine and epoprostenol in that it has little effect on cardiac output. It is usually given via a facemask at 20-40 ppm.

It is important to make a hemodynamic assessment of the entire circulatory system when determining the influence of drugs in these patients. Small changes in pulmonary artery pressure may be due to variability and not direct drug influence. Changes in pulmonary vascular resistance cannot be directly measured, but are computed by the change in pulmonary pressure and cardiac output simultaneously. Thermodilution cardiac output is the method that is most commonly used in these patients, but it can be associated with large errors in reproducibility. As a result, particular care should be taken in the methodology of thermodilution when used in these patients. In addition, when an underlying right-to-left shunt exists, the Fick determination of cardiac output is required.

Changes in pulmonary capillary wedge pressure (PCWP) can have important influences on the determination of pulmonary vascular resistance. A drug that produces an increase in PCWP secondary to increased cardiac output may be the first sign of impending left ventricular failure and an adverse drug effect, even though the calculated pulmonary vascular resistance may be lower and suggest a beneficial effect. The right atrial pressure reflects the filling characteristics of the right ventricle. A right atrial pressure increase in the face of rising cardiac output suggests right ventricular diastolic dysfunction. The resting heart rate is a physiological parameter of marked importance in patients with congestive heart failure. Treatments that cause an increased heart rate are likely to yield deleterious long-term results. Finally, systemic arterial oxygenation should also be evaluated. Vasodilator drugs can result in vasodilatation of blood vessels supplying poorly ventilated areas of the lung and worsen hypoxemia, an effect that is particularly noticeable in patients with underlying chronic lung disease.

Table 1: Classification of pulmonary hypertension

<table>
<thead>
<tr>
<th>World Health Organization 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pulmonary arterial hypertension</td>
</tr>
<tr>
<td>2. Pulmonary venous hypertension</td>
</tr>
<tr>
<td>3. Pulmonary hypertension associated with disorders of the respiratory system and/or hypoxemia</td>
</tr>
<tr>
<td>4. Pulmonary hypertension due to chronic thrombotic and/or embolic disease</td>
</tr>
<tr>
<td>5. Pulmonary hypertension due to disorders directly affecting the pulmonary vasculature</td>
</tr>
</tbody>
</table>

Table 2: Pulmonary arterial hypertension

- Primary pulmonary hypertension
 - Sporadic
 - Familial primary
- Pulmonary hypertension associated with:
 - Collagen vascular disease
 - Drugs/toxins
 - Portal hypertension
 - HIV infection
 - Congenital systemic to pulmonary shunts
 - Persistent pulmonary hypertension of the newborn

Figure 1: Imbalance of vascular growth in pulmonary hypertension

Stimulators

Inhibitors

Smooth muscle cell

Proliferation

Endothelial cell

Apoptosis
Chronic therapy of PAH

Anticoagulants

Oral anticoagulant therapy is widely recommended for patients with PAH, although its clinical efficacy as a therapy is difficult to prove. A retrospective review of patients with PPH monitored over a 15-year period at the Mayo Clinic suggested that patients who received warfarin had improved survival over those who did not. The influence of warfarin therapy has been investigated in patients with PPH who failed to respond to high doses of calcium channel blockers. Significant improvement in survival was observed in patients who received anticoagulation, with a 1-year survival rate of 91% and a 3-year survival rate of 47%, as compared with 1- and 3-year rates of 62% and 31%, respectively, in patients who did not receive anticoagulants. The current recommendation is to use warfarin in relatively low doses, as recommended for the prophylaxis of venous thromboembolism, with the international normalized ratio maintained at 2.0 to 3.0 times control.

Given its inhibitory effects on smooth muscle proliferation, heparin might be a better anticoagulant in PPH, although its use is more difficult. With the recent advent of low-molecular-weight heparins requiring once-a-day administration without the need for adjusting the dose to its antithrombotic effect, treatment with these agents is becoming a more viable alternative.

Vasodilator therapy

Because of early reports showing a reduction in pulmonary artery pressure following the acute administration of vasodilators, it was presumed that vasodilators would be the mainstay of treatment in patients with PAH. This presumption, however, has not been supported by the published literature. Vasodilators are effective in a subset of patients with PAH, but the many complexities surrounding vasodilator administration make their use in these patients very difficult.

Vasodilators work through the final common cellular pathway causing a reduction in intracellular calcium in vascular smooth muscle cells. The same mechanism is also attributable to cellular growth inhibition. Indeed, almost all vasodilators have been shown to possess growth inhibitory properties on smooth muscle cells in cultures. It is likely that the chronic effects of these agents in PAH represent both mechanisms.

Among the vasodilators prescribed to patients with PAH, calcium channel blockers appear to have the widest usage. Early studies using conventional doses failed to demonstrate a chronic sustained benefit. Moreover, calcium channel blockers have properties that may worsen underlying PAH, including negative inotropic effects on right ventricular function and reflex sympathetic stimulation that may increase the resting heart rate. However, it has been reported that 10% to 20% of patients with PPH who are challenged with very high doses of calcium channel blockers may manifest a dramatic reduction in pulmonary artery pressure and pulmonary vascular resistance which, upon serial catheterization, has been maintained for over 5 years.

Importantly, the patient’s quality of life is restored with improved functional class, and survival (94% at 5 years), is improved when compared with nonresponders and historical control subjects (36% survival at 5 years). This experience suggests that a select subset of patients with PPH have the ability to have their PAH reversed and their quality of life and survival enhanced.

It is unknown whether the response to calcium channel blockers identifies subsets of patients with PPH, different stages of PPH, or a combination of both. However, it is essential to point out that patients who do not exhibit a dramatic hemodynamic response to calcium channel blockers do not appear to benefit from their long-term administration. Unfortunately, it is a common practice for physicians to prescribe calcium channel blockers at conventional doses to all patients with PAH, often without hemodynamic guidance. This unfortunate practice may result in quicker deterioration in these patients and should be strongly discouraged.

Prostacyclins

In randomized clinical trials, continuous-infusion epoprostenol has been shown to improve quality of life and symptoms related to PPH, ie, exercise tolerance, hemodynamics, and survival. The initial enthusiasm for epoprostenol was based on the demonstration of pulmonary vasodilator effects when administered to experimental animals with acute pulmonary vasoconstriction. The long-term effects of epoprostenol in PPH include its vasodilator and antithrombotic effects, but its effects may also be importantly related to its ability to normalize cardiac output. Patients may have a reduction in pulmonary vascular resistance of >50% even if no acute pressure effects are noted.

Epoprostenol is administered through a central venous catheter that is surgically implanted and delivered by an ambulatory infusion system. The delivery system is complex and requires patients to learn the techniques of sterile drug preparation, operation of the pump, and care of the intravenous catheter. Most of the serious complications that have occurred with epoprostenol therapy have been attributable to the delivery system, including catheter-related infections, thrombosis, and temporary interruption of the infusion because of pump malfunction. Anecdotal reports of rebound pulmonary hypertension occurring in patients experiencing an interrupted infusion suggest that great care must be taken to ensure that the infusion is sustained.

Side effects related to epoprostenol include flushing, headache, nausea, diarrhea, and a unique type of jaw discomfort that occurs with eating. In most patients, these symptoms are minimal and well tolerated. Chronic foot pain and a poorly defined gastropathy with prolonged use develop in some patients. To date, epoprostenol has been given to patients with PPH for over 10 years with sustained effectiveness. In some patients (Class IV) who are critically ill, it serves as a bridge to lung transplantation by stabilizing the patient to a more favorable preoperative state. Patients who are less critically ill may do so well with epoprostenol therapy that they may delay the need to consider transplantation, perhaps indefinitely.
A high-cardiac output state has been reported in a series of patients with PAH receiving chronic epoprost

tenol therapy and is consistent with the drug having posi
tive inotropic effects. Whether the effect is directly on
the myocardium or indirectly via neurohormonal activa

tion has not been determined. Although most patients
with PAH have reduced cardiac output on initial exami

nination, the development of a chronic high-output state
could have long-term detrimental effects on underlying
cardiac function. The follow-up assessment of patients
receiving intravenous epoprostenol is quite variable from
medical center to medical center, but it does appear
to determine periodically the cardiac output

to optimize dosing. Importantly, the development of a chronic high-output state
could have long-term detrimental effects on underlying
cardiac function. The follow-up assessment of patients
receiving intravenous epoprostenol is quite variable from
medical center to medical center, but it does appear
important to determine periodically the cardiac output
response to therapy in order to optimize dosing.

Experiences with epoprostenol in PPH for >10 years
have been reported by 2 large centers. Survival rates over
5 years were markedly improved compared to historical
controls and the natural history predicted by the National
Institutes of Health (NIH) Registry. Predictors of survival
included New York Heart Association (NYHA) functional
class, exercise tolerance, and acute vasodilator respon

siveness. Both studies provided important data in identi

fying patients who would do well over the long-term vs.
those in whom transplantation should be considered
(Figure 2).

Treprostinil is a recent FDA-approved stable prosta
cyclin analogue that shares pharmacologic actions that
are similar to epoprostenol; however, it differs in that it
is chemically stable at room temperature, has a neutral pH,
and a longer half-life (3-4 hours). In a large randomized
clinical trial in patients with PAH, treprostinil was effec
tive in increasing the 6-minute walk test, symptoms of
dyspnea associated with exercise, and hemodynamics.

The pharmacologic properties of treprostinil allow it to
be administered through continuous subcutaneous infu

sion, thus eliminating the need for a central venous
catheter and refrigeration during administrations. Infu

sion site pain was common (Figure 3).

Iloprost is an analogue of prostacyclin that has been
utilized via inhalation. In randomized clinical trials,
inhaled iloprost was shown to have an acute effect on
hemodynamics similar to inhaled nitric oxide. When
given chronically, patients reported an improvement in
exercise, manifested by a 6-minute walk test, and in
hemodynamics. Inhaled iloprost has advantages over
intravenous epoprostenol in that it does not require a
central venous catheter and infusion pump system with the
attendant complications. However, due to the short half-
life of iloprost, it requires frequent (up to 12 per day)
inhalations that are very restrictive to patients on this
therapy. Iloprost is not available in the United States.

Beraprost sodium is an orally active prostacyclin
analogue that has been evaluated in randomized, double-
blind, placebo-controlled, multicenter trials in patients
with PPH. In one large European trial (the ALPHABET
study), beraprost improved exercise capacity and symp

toms over a 12-week period, but had no significant effect
on cardiopulmonary hemodynamics or functional class.

A similar trial conducted in the United States, however,
failed to show long-term efficacy beyond 12 weeks. Beraprost was associated with frequent side effects (ie,
headache, flushing, and diarrhea) that has limited the
ability to administer higher doses.

Endothelin receptor blockers

Bosentan is a non-selective endothelin receptor
blocker that was recently approved as a treatment for
PAH. In a 12-week, placebo-controlled trial of 32
patients with PAH, bosentan was superior to placebo in
increasing the 6-minute walk distance and hemodynamics.

In a large, randomized, clinical trial, bosentan
significantly improved the 6-minute walk distance after
16 weeks compared to placebo. It was also shown to
lengthen the composite endpoint of time-to-clinical
worsening (including death, lung transplantation, hospi
talization for pulmonary hypertension, lack of improve
ment) or worsening leading to discontinuation and the
requirement for epoprostenol therapy. Importantly, there
was a dose-dependent increase in hepatic transaminases
noted with the medication, with significant elevations in
14% of the patients randomized to the higher dose (250
mg BID). The FDA approved bosentan at a dose of 125
mg twice a day for patients with PAH who are WHO

<table>
<thead>
<tr>
<th>No. at risk</th>
<th>Weeks</th>
<th>Cumulative survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV epo:</td>
<td>178</td>
<td>0.2</td>
</tr>
<tr>
<td>Hist. control:</td>
<td>135</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 2: Survival in PPH

<table>
<thead>
<tr>
<th>Walk (m)</th>
<th>Week 1</th>
<th>Week 6</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borg Score</td>
<td>0.3</td>
<td>0.03</td>
<td>0.0064</td>
</tr>
<tr>
<td>P</td>
<td><0.0001</td>
<td>0.0002</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Figure 3: Effect of treprostinil on walk distance and symptoms in pulmonary hypertension
considered first-line therapy. The data indicate that intra-
venous epoprostenol produces a greater improvement in
symptoms, exercise tolerance, hemodynamics, and sur-
vival than any other therapy studied to date. Indeed, it
would be considered the ideal treatment for patients with
PAH were it not for the cumbersome and costly delivery
system and associated complications. Subcutaneous
remodulin is the only other FDA-approved prostacyclin
for PAH. Although the delivery system is simpler, it is
still a chronic infusion system with its own limitations of
site pain.

Some physicians recommend oral therapy first
because of the ease of administration. The concern with
this approach, however, is that if a patient is treated with
ineffective oral therapy, the disease may progress to a
point that renders intravenous epoprostenol less effective.
In general, patients who present with less advanced
symptoms or hemodynamics are offered oral therapy ini-
tially, whereas, those who present with advanced disease
(Functional Class IV), or severe hemodynamic findings
are usually placed on intravenous epoprostenol. This is a
reasonable strategy provided the physician is thorough in
the evaluation and follow-up care of the patient. Specifi-
cally, with the availability of oral therapy, it is essential
that physicians not treat patients before establishing a
definitive diagnosis, since all of these agents can have
detrimental effects on patients with PAH related to left
heart failure and/or lung disease. Secondly, it is essential
to measure the efficacy of every treatment that is utilized.
This does not necessarily mean serial right heart
catheterizations. Indeed, exercise testing (whether using
a 6-minute walk or a treadmill) is a proven, reproducible,
and predictive measure of therapeutic efficacy. Establish-
ing a baseline test allows the physician to make accurate
assessments as to whether or not the therapy is helpful,
harmful, or having no effect. We recommend monitoring
the efficacy of treatments frequently with exercise testing
until it is determined which therapy is best.

If a therapy is ineffective, it should be discontinued
and the patient should be treated with another drug.
Physicians too frequently add new therapies to existing
failed therapies, not realizing that some of these treat-
ments can have negative interactions and make the

Phosphodiesterase-5 inhibitors

Sildenafil is a phosphodiesterase 5 (PDE5) inhibitor
approved to treat erectile dysfunction. PDE5 inhibitors
produce pulmonary vasodilation by promoting an
enhanced and sustained level of cyclic GMP, an identical
effect to inhaled NO. When tested as a single oral agent,
sildenafil has been shown to be a potent and selective
pulmonary vasodilator equally as effective as inhaled NO
in lowering pulmonary artery pressure and pulmonary
vascular resistance.18 Sildenafil has a preferential effect
on the pulmonary circulation because of the high expres-
sion of this isoform in the lung. Many anecdotal reports
appear in the published medical literature on the success
of sildenafil as an oral therapy for patients with PPH.19-21
The safety and long-term effectiveness of sildenafil as a
treatment of PAH is currently under investigation in
large, randomized, clinical trials (Figure 5).

Selecting appropriate therapies

Since no head-to-head clinical trials have ever been
performed on the different therapies for treating PAH, it
remains uncertain as to which treatment should be

**Figure 5: Oral sildenafil (S) vs. inhaled NO (INO) in
patients with PAH**

![Figure 5: Oral sildenafil (S) vs. inhaled NO (INO) in
patients with PAH](image)

- % Δ mPAP
- % Δ PVRi
- % Δ CI
- % Δ PAWP

mPAP = mean pulmonary arterial pressure
CI = cardiac index
PVRi = pulmonary vascular persistence index
PAWP = pulmonary artery wedge pressure
patients worse. The wide spectrum of therapies available, however, should make it possible to improve the symptoms of virtually every patient with pulmonary arterial hypertension in this era (Figure 6).

References

Stuart R. Rich, M.D. received his medical education from Loyola University, Stritch School of Medicine. He completed his residency at Washington University, Barnes Jewish Hospital, cardiology fellowship at the University of Chicago Hospitals. Dr. Rich has wide ranging interests in clinical cardiology and is a leading international expert in the evaluation and treatment of pulmonary vascular diseases. He is a Fellow of the American Heart Association, of the American College of Cardiology, of the American College of Chest Physicians and of the American College of Physicians. He presently serves as Professor of Medicine, the John H. and Margaret V. Krehbiel Professor of Cardiology at the Rush Medical College, Director of the Center for Pulmonary Heart Disease and Director of the Coronary Heart Disease Detection and Treatment Center at the Rush Heart Institute, Chicago, Illinois.

Dr. Rich has served as a consultant or received research grants from Actelion, Encysive, Inos, Myogen, and Pfizer and is currently Chief Medical Officer for United Therapeutics.

This publication is made possible by an educational grant from

Novartis Pharmaceuticals Corporation

© 2003 Brigham and Women’s Hospital, Boston, Massachusetts, which is solely responsible for the contents. The opinions expressed in this publication do not necessarily reflect those of the publisher or sponsor, but rather are those of the author based on the available scientific literature. Publisher: SNELL Medical Communication Inc., in cooperation with Brigham and Women’s Hospital, Boston, Massachusetts. ©Cardiology Rounds is a Trade Mark of SNELL Medical Communication Inc. All rights reserved. The administration of any therapies discussed or referred to in *Cardiology Rounds* should always be consistent with the recognized prescribing information as required by the FDA. SNELL Medical Communication Inc. is committed to the development of superior Continuing Medical Education.